The Role of zinc in the disulphide stress-regulated anti-sigma factor RsrA from Streptomyces coelicolor.
نویسندگان
چکیده
The regulation of disulphide stress in actinomycetes such as Streptomyces coelicolor is known to involve the zinc-containing anti-sigma factor RsrA that binds and inactivates the redox-regulated sigma factor sigmaR. However, it is not known how RsrA senses disulphide stress nor what role the metal ion plays. Using in vitro assays, we show that while zinc is not required for sigmaR binding it is required for functional anti-sigma factor activity, and that it plays a critical role in modulating the reactivity of RsrA cysteine thiol groups towards oxidation. Apo-RsrA is easily oxidised and, while the Zn-bound form is relatively resistant, the metal ion is readily expelled when the protein is treated with strong oxidants such as diamide. We also show, using a combination of proteolysis and mass spectrometry, that the first critical disulphide to form in RsrA involves Cys11 and one of either Cys41 or Cys44, all previously implicated in metal binding. Circular dichroism spectroscopy was used to follow structural changes during oxidation of RsrA, which indicated that concomitant with formation of this critical disulphide bond is a major restructuring of the protein where its alpha-helical content increases. Our data demonstrate that RsrA can only bind sigmaR in the reduced state and that this state is stabilised by zinc. Redox stress induces disulphide bond formation amongst zinc-ligating residues, expelling the metal ion and stabilising a structure incapable of binding the sigma factor.
منابع مشابه
Assignment of the zinc ligands in RsrA, a redox-sensing ZAS protein from Streptomyces coelicolor.
ZAS proteins are widespread bacterial zinc-containing anti-sigma factors that regulate the activity of sigma factors in response to diverse cues. One of the best characterized ZAS proteins is RsrA from Streptomyces coelicolor, which responds to disulfide stress. Zn-RsrA binds and represses the transcriptional activity of sigmaR in the reducing environment of the cytoplasm but undergoes reversib...
متن کاملFRET-Based System for Probing Protein-Protein Interactions between σR and RsrA from Streptomyces Coelicolor in Response to the Redox Environment
Protein-protein interactions between sigma factor σ(R) and its corresponding zinc-binding anti-sigma (ZAS) protein RsrA trigger the thioredoxin system for maintaining cellular redox homeostasis in S. coelicolor. RsrA bound to zinc associates with σ(R), inhibiting its transcriptional activity in a reducing environment. During disulfide stress it forms intramolecular disulfide bonds, leading to z...
متن کاملThe anti-sigma factor RsrA responds to oxidative stress by reburying its hydrophobic core
Redox-regulated effector systems that counteract oxidative stress are essential for all forms of life. Here we uncover a new paradigm for sensing oxidative stress centred on the hydrophobic core of a sensor protein. RsrA is an archetypal zinc-binding anti-sigma factor that responds to disulfide stress in the cytoplasm of Actinobacteria. We show that RsrA utilizes its hydrophobic core to bind th...
متن کاملDeterminants of redox sensitivity in RsrA, a zinc-containing anti-sigma factor for regulating thiol oxidative stress response
Various environmental oxidative stresses are sensed by redox-sensitive regulators through cysteine thiol oxidation or modification. A few zinc-containing anti-sigma (ZAS) factors in actinomycetes have been reported to respond sensitively to thiol oxidation, among which RsrA from Streptomyces coelicolor is best characterized. It forms disulfide bonds upon oxidation and releases bound SigR to act...
متن کاملThe anti-anti-sigma factor BldG is involved in activation of the stress response sigma factor σ(H) in Streptomyces coelicolor A3(2).
The alternative stress response sigma factor σ(H) has a role in regulation of the osmotic stress response and in morphological differentiation in Streptomyces coelicolor A3(2). Its gene, sigH, is located in an operon with the gene that encodes its anti-sigma factor UshX (PrsH). However, no gene with similarity to an anti-anti-sigma factor which may have a role in σ(H) activation by a "partner-s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of molecular biology
دوره 333 2 شماره
صفحات -
تاریخ انتشار 2003